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Elastic and thermodynamic properties of the Al18Mg3M2 (M = Sc, Ti, Cr, Mn and Zr) phases with cubic structure were 

investigated by means of first-principles calculations within the framework of density functional theory. The three 

independent single-crystal elastic constants were calculated, showing that the Al18Mg3M2 phases are mechanically stable 

structures. Then the bulk modulus B, Young’s modulus E, shear modulus G and Poison’s ratio  were estimated for 

polycrystalline Al18Mg3M2 from the elastic constants by the Voigt–Reuss–Hill (VRH) approximation. The ductility of 

Al18Mg3M2 phases was analyzed, and Al18Mg3Sc2 possesses the greatest plasticity or ductility. The elastic anisotropy was 

also further discussed in details. The Young’s modulus for single crystal Al18Mg3M2 was the highest in the <111> direction. 

Finally, thermodynamic properties such as the Debye temperatures, the specific heat, and melting temperature for the 

Al18Mg3M2 phases were estimated from elastic properties.  
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1. Introduction 

 

Aluminum-magnesium (Al-Mg) alloys are good 

lightweight structural materials with low density 

(relatively high strength to weight ratio), high specific 

stiffness, good corrosion resistance and ductility. They 

have been widely used in many different fields including 

automotive, aerospace, marine and microelectronics 

industries. However, the relatively poor high-temperature 

mechanical properties also limits the role they play in the 

wider fields. Al-Mg alloys usually contain additives of 

transition metals, such as Mn, Cr, Sc, Ti and Zr and other 

metals. Small concentrations of transition metals increase 

the tensile strength [1,2], corrosion resistance [3] of these 

alloys. To further improve the performance of these alloys, 

a large number of experiments and theoretical explorations 

on microstructure, strengthening mechanism, workability 

and mechanical properties have been reported for Al-Mg-

Sc alloys [4-9].  

However relatively few researches of mechanical and 

thermodynamic properties of Al-Mg-M (M= Ti, Cr, Mn 

and Zr) alloys were implemented so far. Kerimov et al. 

[10,11] reported the first time the crystal structures of the 

ternary intermetallic Al-Mg-Transition metal (Ti, V, Cr, 

Mo, W, Ta) phases, which have been found to crystallize 

in cubic symmetry. Recently, Zhang et al. [12] reported 

that the elastic and electronic properties of cubic 

Al18Ti2Mg3 phase from the first principle calculation. In 

our recent works, the structural, electronic properties and 

stability of Al18Mg3M2 (M = Sc, Ti, Cr, Mn and Zr) 

compouds were performed by the first-principle 

calculations. It was found that the addition transition 

metals to Al-Mg alloys has an important effect on the 

bonding characteristics and interaction strength between 

Al and transition metal atoms, Al and Mg, Al and Al [13]. 

However, What elastic and thermodynamic properties can 

be expected within the Al18Mg3M2 system? How do the 

mechanical properties of the polycrystalline materials 

exhibit?  

Values of the elastic constants can provide valuable 

information about the bonding character between adjacent 

atomic planes and the anisotropic character of the bonding 

and structural stability. It is essential to understand the 

actual alpplications of Al18Mg3M2 phases. In this paper, 

authors attempt to calculate the elastic and thermodynamic 

properties of Al18Mg3M2 (M= Sc, Ti, Cr, Mn and Zr) 

phases by first-principle calculations. Our aim is to 

provide reference data for experimentalists and to 

contribute towards a better understanding of this class of 

alloys. 

 

 

2. Computational method 

 

Our calculations are based on the density functional 

theory, using so called Quantum-ESPRESSO program 

package [14], in conjunction with the generalized-gradient 

approximations (GGA) of PW91 adopted for all elements 

in our models by adopting the Perdew–Burke–Ernzerhof 

parameters [15,16]. Ultrasoft pesudopotentials [17] 

http://www.quantum-espresso.org/


Calculated elastic and thermodynamic properties of Al18Mg3M2 (M = Sc, Ti, Cr, Mn and Zr) phases                       159 

 

represented in reciprocal space are used. We use the 

following parameters for the present calculations: 

Conjugate gradient optimization of the wave functions, 

reciprocal-space integration with a Monkhorst-Pack 

scheme [18], energy cutoff of 500 eV, k-points grid of 

6×6×6. The total energies are calculated self-consistently 

with the tetrahedron method [19]. Electronic self-

consistent field (SCF) tolerance is less than 5.0×10
-5

 

eV/atom. Hellmann–Feynman force is below 0.01eV/ . 

The maximum stress is less than 0.05GPa and 

displacement is within 2.0×10
-4

. Convergence with 

respect to the k-point sampling for the Brillouin zone (BZ) 

integration was tested independently on the the phases 

using regular meshes of increasing density. Tests indicated 

that the total energy converges to 2 meV/atom. Pulay 

density mixing scheme was applied for the electron energy 

minimization process. The valence electronic 

configurations were Al (3s
2
3p

1
), Mg (2p

6
3s

2
), Ti 

(3s
2
3p

6
3d

2
4s

2
), Cr (3s

2
3p

6
3d

5
4s

1
), Mn (3s

2
3p

6
3d

5
4s

2
), Sc 

(3s
2
3p

6
3d

1
4s

2
), Zr (4s

2
4p

6
4d

2
5s

2
) in the calculations.  

In present work, the original crystal configurations of 

Al18Mg3M2 (M = Sc, Ti, Cr, Mn and Zr) phases in the 

cubic structure with the space group Fd-3m (No.227) were 

chosen from the X-ray diffraction results given in Ref. 

[11]. The unit cell has 184 atoms in which the Al atoms 

occupy the 48f (0.4843,0.125,0.125) and 96g 

(0.0584,0.0584,0.3252) Wyckoff sites, the transition metal 

atoms occupy 16d (0.5,0.5,0.5) sites and the Mg atoms 

occupy the 8a (0.125,0.125,0.125)sites and 16c (0,0, 0) 

sites, as shown in Fig. 1. Starting from the above crystal 

structure, the structural optimization was first performed 

by full relaxation of cell shape and atomic positions. Then 

the calculations of elastic and thermodynamic properties 

were based on the optimized equilibrium structures.   

 

 

Fig. 1. Crystal structure of Al18Mg3M2 (M = Sc, Ti,  

Cr, Mn and Zr). 

 

The elastic constants determine the stiffness of a 

crystal against an externally applied strain. For small 

deformations a linear dependence of the stress on the 

strain is observed (Hooke’s law). Hooke’s law can be 

generalized to account for multiaxial loading conditions as 

well as the elastic anisotropy. For the cubic structure such 

as Al18Mg3M2 Phases (M = Sc, Ti, Cr, Mn and Zr), the 

number of independent elastic constants is three (C11, C12 

and C44) and the generalized Hooke’s law can be written 

as [20] 

                  (1) 

where ij is the stress tensor, kl is the Lagrangian strain 

tensor, and Cijkl is the elastic constant tensor which is a 

6×6 matrix. The symmetry present in the crystal structure 

may make some of these tensors equal and others may be 

fixed at zero. For the cubic structure, Eq. (1) can be given 

as follows: 

 

   (2) 

 

where Cij is the elastic constant; i and i are the normal 

stress and shear stress, correspondingly, i and γi are the 

normal strain and shear strain, respectively. The full elastic 

constants of Al18Mg3M2 phases (M = Sc, Ti, Cr, Mn and 

Zr) with cubic structure can be determined by strain 

pattern (1 0 0 γ4 0 0)
T
. We substituted the strain pattern 

into Eq. (2), then obtained 1=C111, 2=C121 and 

4=C44γ4. Finally, the three independent elastic constants 

(C11, C12 and C44) of Al18Mg3M2 were calculated. 

 

 

3. Results and discussions 

 

3.1 Elastic constants and mechanical stability 

 

Elastic constants are the measure of the resistance of a 

crystal to an externally applied stress. Through imposing 

small strain on the perfect lattice, the elastic constants can 

be obtained. The values of elastic stiffness constants (C11, 

C12 and C44) and elastic compliance constants (S11, S12 and 

S44) for Al18Mg3M2 phases (M = Sc, Ti, Cr, Mn and Zr) 

were presented in Table 1, along with the available 

experimental data and previously calculated values 

obtained by ab initio techniques. The addition of Mg and 

transition metal atoms to Al matrix can influence 

particular elastic constants in different way. Comparing 

with pure aluminum and Al12Mg17, elastic constants C11 

and C44 increase for Al18Mg3M2 (M = Ti, Cr, Mn and Zr) 

phases, whereas decreases for Al18Mg3Sc2 phase. It is 

indicated that normal stresses in three crystal direction (1, 

2 and 3) and shear stresses (4, 5 and 6) increase (or 

decraeses) for Al18Mg3M2 (M = Ti, Cr, Mn and Zr) phases 

(or Al18Mg3Sc2). However, elastic constant C12 does not 

show clear tendency. Moreover, the elastic constants of 

Al18Mg3Ti2 phase here are good agreement with the 

calculated results in Ref. [12] (see Table 1). To our 

knowledge, there have been no experimental and 
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theoretical values of the elastic constants on Al18Mg3M2 

(M = Sc, Cr, Mn and Zr) phases. 

The intrinsic mechanical stability of a solid is in 

general determined by certain conditions related to the 

crystal symmetry. For cubic lattice, the criteria of 

mechanical stability is that C44, C11-C12 and C11+2C12 must 

be positive. The calculated results of Al18Mg3M2 (M = Sc, 

Ti, Cr, Mn and Zr) phases obey all of the above criteria, 

and indicate that the phases are mechanically stable.  

 

 

Table 1. The calculated elastic constants, Ci j (in GPa) and Si j (1/GPa) for Al18Mg3M2 phases (M = Sc, Ti, Cr, Mn and Zr). 

 

Species C11 C12 C44 S11 S12 S44 

Al18Mg3Sc2 

Al18Mg3Ti2 

Al18Mg3Ti2
a 

Al18Mg3Cr2 

Al18Mg3Mn2 

Al18Mg3Zr2 

Pure Al
b 

Al12Mg17
c 

101.6 

131.7 

131 

145.5 

144.5 

114.8 

114.3 

97.7 

48.1 

52.8 

50 

56.8 

62.0 

49.3 

61.9 

28.1 

24.7 

47.9 

56 

55.0 

49.3 

48.0 

31.6 

31.4 

0.014 

0.0099 

- 

0.0088 

0.0093 

0.011 

- 

- 

-0.0045 

-0.0028 

- 

-0.0025 

-0.0028 

-0.0035 

- 

- 

0.041 

0.021 

- 

0.018 

0.020 

0.021 

- 

- 
                                                                      a Ref. [12], b Ref. [21], c Ref. [22]. 

 

 

3.2 Elastic properties for polycrystalline  

   aggregates 

 

To account for a polycrystalline material, the upper 

and lower bounds (Reuss [23] and Voigt [24]) of bulk (BR, 

BV) and shear (GR, GV) modulus are found from single 

crystal elastic constants. Voigt assumes that the strain in 

the polycrystalline aggregate to the external strain is 

uniform, while Reuss assumes the stress in the 

polycrystalline aggregate to the external stress is uniform. 

The Voigt shear modulus GV and the Reuss shear modulus 

GR for cubic lattices are: 

 

             (3) 

 

and 

                   (4) 

 

respectively, and the Voigt bulk modulus BV and the Reuss 

bulk modulus BR are defined as: 

 

                     (5) 

and 

                     (6) 

 

respectively. In Eqs. (4) and (6), Sij is the elastic 

compliance constants. Subsequently, a simple average of 

those bound values of BR, BV and GR, GV was calculated as 

proposed by Hill [25]. The bulk modulus and shear 

modulus are: 

 

                        (7) 

and 

                                  (8) 

 

respectively. Additionally the Young modulus EH and 

Poisson ratio H have been calculated using Hill’s 

empirical average and the equations: 

 

                (9) 

and 

           (10) 

 

All calculated results based on Eqs. (3)-(10) are listed 

in Table 2. Note that the difference between BV and BR as 

well as between GV and GR is comparatively small. As 

seen from Table 2, the calculated bulk modulu of 

Al18Mg3Mn 2 is highest, indicating that the resistance to 

volume change by applied pressure is eventually 

improved. The shear modulu and Young’s modulu of 

Al18Mg3Cr 2 are highest. And GH, BH and EH of Al18Mg3Sc2 

are smallest.  

The ratio of the bulk modulus to shear modulus of 

crystalline phases, proposed by Pugh [26], can empirically 

predict the brittle and ductile behavior of materials. A high 

B/G ratio is associated with ductility, whereas a low value 

corresponds to brittle nature. The critical value which 

separates ductile and brittle material is around 1.75. The 

calculated results in Table 2 show that Al18Mg3Ti 2, 

Al18Mg3Sc2 and Al18Mg3Mn2 phases exhibit good ductility. 

Whileas Al18Mg3Cr2 and Al18Mg3Zr2  are brittle. Besides 

B/G, it is found that C11-C12 and Young’smodulus E are 

another two significant indications of the mechanical 

properties of materials [27]. The smaller the values of C11-

C12 and Young’s modulus are, the better the plasticity is. 

From the results in Tables 1 and 2, it can be seen that 

Al18Mg3Sc2 has lowest values of C11-C12 and Young’s 

modulus E, implying the greasest plasticity. On the other 

hand, Poisson’s ratio H is used to quantify the stability of 

the crystal against shear, which usually ranges from -1 to 

0.5. The larger the Poisson’s ratio is, the better the 

V 11 12 44( 3 ) / 5G C C C  

R 11 12 445 / (4 4 3 )G S S S  

V 11 12( 2 ) / 3B C C 

R 11 121/ (3 6 )B S S 

H V R( ) / 2B B B 

H V R( ) / 2G G G 

H H H H H9 / (3 )E B G B G 

H H H H H(3 2 ) / (6 2 )B G B G   
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plasticity is. In Table 2, it can be seen that Al18Mg3Sc2 has 

a greatest Poisson’s ratio equal to 0.329, showing that it 

has also a greatest plasticity compared to the rest. Whereas 

Al18Mg3Cr2 has a poorest plasticity with Poisson’s ratio 

equal to 0.255. Therefore, addition of Sc to Al-Mg based 

alloys could effectively improve the ductility (or 

plasticity). Considering the lower stiffness and the cubic 

structure, Al18Mg3Sc2 phase might be easy to deform than 

other four phases under outer stress. Very fine-grained Al-

Mg-Sc alloys have been tested to tensile elongation values 

of 1000% [28,29], and many results have been published 

on high strain-rate superplasticity of Al-Mg-Sc alloys with 

fine grains produced by equalangular channel pressing 

(ECAP) [30,31]. The addition of Cr to Al-Mg based alloys 

however makes materials brittle. The rigidity of 

Al18Mg3Cr2 is also improved due to the highest Young’s 

modulus, EH (Table 2).  

 

 

 

Table 2. The calculated values of shear modulu (in GPa), GV, GR and GH, bulk modulu (in GPa), BV, BR and BH, Young’s  

modulus (in GPa), EH, Poisson’s ratio, H and B/G of Al18Mg3M2 (M = Sc, Ti, Cr, Mn and Zr) phases. 

 

 Al18Mg3Sc2 Al18Mg3Ti2 Al18Mg3Cr2 Al18Mg3Mn2 Al18Mg3Zr2 

GR  

GV 

GH 

BR 

BV 

BH 

EH 

H 

B/G 

25.5 

25.5 

25.5 

65.9 

65.9 

65.9 

67.8 

0.329 

2.58 

44.1 

44.5 

44.3 

79.1 

79.1 

79.1 

112 

0.264 

1.79 

50.3 

50.7 

50.5 

86.3 

86.3 

86.3 

127 

0.255 

1.71 

45.7 

46.1 

45.9 

89.5 

89.5 

89.5 

118 

0.281 

1.95 

40.5 

41.9 

41.2 

71.2 

71.2 

71.2 

104 

0.257 

1.73 

 

 

3.3 Elastic anisotropy 

 

The elastic constants of solids are very important 

because they are closely associated with the mechanical 

and physical properties. In particular, they play an 

important part in providing valuable information about 

structural stability and anisotropic characteristics. In 

present work, we calculated two anisotropic indexes of 

single crystal proposed by Zener [32] and Every [33], 

which are listed as follows, respectively: 

          (11) 

     (12) 

For an isotropic crystal the standard values of AZ and 

AE must be 1 and 0, respectively. Obviously, the small 

deviations of the two indexes from AZ and AE imply elastic 

isotropy of materials. The calculated values listed in Table 

3 show that all Al18Mg3M2 phases are anisotropic. 

The elastic anisotropy in compressibility and shear 

was also investigated using two dimensionless quantities 

AB=(BV-BR)/( BV + BR) and AG=(GV-GR)/( GV + GR), 

respectively [34]. The subscripts V and R designate 

theVoigt and Reuss bounds, which represent the maximum 

and minimum limits of the polycrystalline elastic modulus. 

The value of zero represents elastic isotropy and the value 

of unity indicates the largest possible anisotropy. The 

calculated values of AB and AG are 0 and below 2 %, 

respectively for all phases. Therefore, Al18Mg3M2 phases 

do not have anisotropy in compression and exhibited small 

anisotropy in shear. 

 

 

 

 

Table 3. The calculated anisotropic factors of Al18Mg3M2 (M = Sc, Ti, Cr, Mn and Zr) phases. 

 

Species AZ AE AB AG 

Al18Mg3Sc2 

Al18Mg3Ti2 

Al18Mg3Cr2 

Al18Mg3Mn2 

Al18Mg3Zr2 

0.92 

1.21 

1.24 

1.20 

1.47 

0.053 

-0.20 

-0.24 

-0.17 

-0.46 

0 

0 

0 

0 

0 

0 

0.0045 

0.0040 

0.0044 

0.017 

 

 

The orientation dependence of the Young’s modulus 

on a single crystal can be obtained from the elastic 

compliance coefficients Sij. For the case of the cubic 

system, it can be shown that the Young’s modulus in any 

given direction is given in terms of the three independent 

elastic compliance coefficients and the direction cosines of 

the crystallographic direction [35]: 

 

Z 44 11 122 / ( )A C C C 

E 11 12 44 11 44( 2 ) / ( )A C C C C C   
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  (13) 

 

where l1, l2, and l3 are the directional cosines, and they can 

be obtained by l1=sin[]cos[], l2=sin[]sin[] and 

l3=cos[] in spherical coordinates. The angles  and  are 

well defined in spherical coordinates. Sij is defined as an 

elastic compliance matrix (i.e.,the inverse of the elastic 

stiffness matrix) (see Table 1). Considering the 

Al18Mg3M2 series studied here exhibit similar features, 

accordingly we have only documented such plots for 

Al18Mg3Sc2 phase. Fig. 2 shows the orientation 

dependence of the Young’s modulus for Al18Mg3Sc2 

phase. For an isotropic system, the orientation dependence 

of Young’s modulus should be spherical shape. As can be 

seen from Fig. 2 (a), the Young’s modulus graph for 

Al18Mg3Sc2 phase exhibits ellipsoidal shape which 

indicates that the Young’s modulus of the phase is 

anisotropic. This agrees with the analyses of elastic 

anisotropic indexes (Table 3). Fig. 2 (b)-(d) give the 

distribution shape of the Young’s modulus in different 

crystal planes, clearly showing the anisotropy in the x-z (a-

c) and y-z (b-c) planes. The Young’s modulus along 

special crystal directions are summarized in Table 4 for all 

phases. The value of the Young’s modulus for the <111> 

direction is the highest of all directions and about two 

times as large as that for the <100> direction, except for 

Al18Mg3Sc2 phase. This means that single crystal 

Al18Mg3M2 phases exhibit a large elastic anisotropy. 

 

 

Table 4. The Young’s modulus of Al18Mg3M2 (M = Sc, Ti, Cr, Mn and Zr) phases along special crystal directions (in GPa). 

 

Species <1 0 0> <0 1 0> <0 0 1> <1 1 0> <1 1 1> 

Al18Mg3Sc2 

Al18Mg3Ti2 

Al18Mg3Cr2 

Al18Mg3Mn2 

Al18Mg3Zr2 

71.4 

101 

114 

108 

90.9 

71.4 

101 

114 

108 

90.9 

71.4 

101 

114 

108 

90.9 

62.5 

130 

154 

139 

143 

56.1 

176 

227 

189 

299 

 

  
(a)                                         (b) 

 
(c)                                           (d) 

Fig. 2. Directional dependence of Young’s modulus for Al18Mg3Sc2, (a) three-dimensional surfaces, the projections  

of Young’s modulus at (b) x-y plane; (c) y-z plane; (d) x-z plane. 

 

 

3.4 Thermodynamic properties 

 

The Debye temperature D is a fundamental attribute 

of a solid connecting elastic properties with 

thermodynamic properties such as specific heat, sound 

velocity and melting temperature. It can be calculated 

from the averaged sound velocity, vm by the following 

equation [36]: 

                 (14) 

where h is Planck’s constant, kB is Boltzmann’s constant, 

NA is Avogadro’s number, n is the number of atoms in the 

2 2 2 2 2 2

11 11 12 44 1 2 1 3 2 3

1 1
2( )( )

2
S S S S l l l l l l

E
     

1
3A

D m

B

Nh 3
[ ( )]

k 4π

n
v

M
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unit cell, M is the molecular weight and  is the density. 

The average sound velocity in the polycrystalline material 

is approximately given by [36]: 

 

                   (15) 

where vl and vs are the longitudinal and transverse sound 

velocity, respectively, which can be obtained using the 

shear modulus G and the bulk modulus B from Navier’s 

equations [37]: 

 

   and      (16) 

 

  The calculated sound velocity and Debye 

temperature as well as the density for the Al18Mg3M2 

phases are given in Table 5. The Debye temperature of 

Al18Mg3M2 phases increases from Sc to Cr, however, it 

decreases from Mn to Zr. That is, Al18Mg3Cr2 has the 

highest Debye temperature, suggesting that Al18Mg3Cr2 is 

hardest. The Debye temperature is lowest for Al18Mg3Sc2, 

suggesting that Al18Mg3Sc2 is softest. Unfortunately, as far 

as we know, there are no experimental data available 

related to these properties in the literature for the 

Al18Mg3M2 phases which are studied here. 

In the approximation of Debye model, the specific 

heat of the solid, Cv can be obtained from Debye 

temperature by the following equation [38] 

 

     (17) 

 

where T is the temperature (K). The calculated values of 

the specific heat of the Al18Mg3M2 phases are shown in 

Fig. 3. The specific heat of the Al18Mg3M2 phases is 

similar and increases with increasing temperature below 

D. However, the specific heat of these phases is gradually 

close to 25 J/mol·K for the high temperature case (T 

>>D), which is the Dulong-Petit result (equal to 3NAkB) 

from classical thermodynamics. For low temperature case 

( T<< D), the electron specific heat becomes significant 

for metals and is combined with the above specific heat in 

the Einstein-Debye specific heat [39].  

 

 

Table 5. The calculated density (), the longitudinal, transverse, and average sound velocity (vl, vs, vm), the  

Debye temperatures (D) and the melting temperature (Tm). 

 

Phase vl (m·s
-1

) vs(m·s
-1

) vm(m·s
-1

)  (kg·m
-3

) D (K) Tm (K) 

Al18Mg3Sc2 

Al18Mg3Ti2 

Al18Mg3Cr2 

Al18Mg3Mn2 

Al18Mg3Zr2 

2010 

2363 

2492 

2468 

2258 

1015 

1338 

1429 

1362 

1291 

1138 

1488 

1587 

1517 

1434 

2524 

2678 

2875 

2939 

2854 

804 

1068 

1167 

1111 

1009 

853 

1031 

1113 

1107 

931 

   

For cubic structural metals, the melting temperature, 

Tm can be estimated from the elastic constants. The 

relationship between the elastic constants and melting 

temperature, Tm is linear by the following empirical 

equation [40]: 

 

          (18) 

 

In present work, a minus sign can be slected in the Eq. 

(18). The calculated values of the melting temperature for 

Al18Mg3M2 phases are listed in Table 5. As seen in Table 

5, the melting temperature of Al18Mg3Sc2 phase is colse to 

Al-Mg alloys. Whereas for other four Al18Mg3M2 phases, 

the melting temperature is much higher than that of Al-Mg 

alloys. It can be understood due to higher Young’s 

modulus, shear modulus and Debye temperatures for those 

phases. 

 
 

Fig. 3. The dependence of specific heat on temperature 

 for Al18Mg3M2 phases. 

 

4. Conclusions 

 

In summary, we have calculated and analyzed the 

elastic properties of the Al18Mg3M2 (M = Sc, Ti, Cr, Mn 

and Zr) phases by the plane-wave ultrasoft pseudopotential 

method based on the density-functional theory. We have 

also calculated the shear modulus, G; Young’s modulus, 

1/3
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E; and Poisson’s ratio for ideal polycrystalline Al18Mg3M2 

aggregates within the scheme of Voigt–Reuss–Hill(VRH) 

approximation, and the ductility was then analyzed. The 

elastic anisotropy was also discussed in details. The results 

show that Al18Mg3M2 phase are mechanically stable 

structures. Al18Mg3Sc2 possesses the best plasticity or 

ductility. And Al18Mg3Cr2 possesses the highest rigidity 

due to highest Young’s modulus. The calculated results of 

the anisotropic indexes of single crystal show that all 

Al18Mg3M2 phases are anisotropic. The directional 

Young’s modulus of Al18 Mg3M2 phases indicates that 

Young’s modulus for the <111> direction is the highest in 

all direction. Finally, we have derived thermodynamic 

properties such as the sound velocity, the Debye 

temperatures, the specific heat, and melting temperature 

for the Al18Mg3M2 phases. 
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